재귀함수
컴퓨터 내부에서 재귀함수의 수행은 스택 자료구조를 이용한다.
따라서 스택 자료구조를 활용해야 하는 상당수 알고리즘은 재귀 함수를 이용해서 간편하게 구현될 수 있다.
→ ex) DFS
- 반복문 대신에 재귀 함수를 이용하면 더 간결한 코드를 작성할 수 있다.
DFS
Depth-First Search, 깊이 우선 탐색이라고도 부르며, 그래프에서 깊은 부분을 우선적으로 탐색하는 알고리즘이다.
그래프는 노드(node)와 간선(edge)로 표현한다.
그래프의 두가지 표현방식
(연결이 되어 있지 않은 노드끼리는 무한(infinity)의 비용이라고 작성한다)
- 인접 행렬(adjacency matrix): 2차원 배열로 그래프의 연결 관계를 표현
- INF = 999999999 # 무한의 비용 선언 # 2차원 리스트를 이용해 인접 행렬 표현 graph = [ [0, 7, 5], [7, 0, INF], [5, INF, 0] ]
- 인접 리스트(adjacency list): 리스트로 그래프의 연결 관계를 표현
인접 리스트 방식에서는 모든 노드에 연결된 노드에 대한 정보를 차례대로 연결하여 저장한다.
(다른 언어의 배열(Array)을 파이썬에서는 리스트 자료형으로 표현할 수 있으므로 파이썬은 인접 행렬을 2차원 리스트로 구현한다)
# 행이 3개인 2차원 리스트로 인접 리스트 표현
graph = [[] for _ in range(3)]
# 노드 0에 연결된 노드 정보 저장(노드, 거리)
graph[0].append((1,7))
graph[0].append((2,5))
# 노드 1에 연결된 노드 정보 저장(노드, 거리)
graph[1].append((0,7))
# 노드 2에 연결된 노드 정보 저장(노드, 거리)
graph[2].append((0,5))
→ 메모리 측면에서 인접 행렬 방식은 모든 관계를 저장하므로 노드 개수가 많을수록 메모리가 불필요하게 낭비된다. 반면에 인접 리스트 방식은 연결된 정보만을 저장하기 때문에 메모리를 효율적으로 사용한다. 하지만 이와 같은 속성 때문에 인접 리스트 방식은 인접 행렬 방식에 비해 특정한 두 노드가 연결되어 있는지에 대한 정보를 얻는 속도가 느리다. 인접 리스트 방식에서는 연결된 데이터를 하나씩 확인해야 하기 때문이다.
이 알고리즘은 특정한 경로로 탐색하다가 특정한 상황에서 최대한 깊숙이 들어가서 노드를 방문한 후, 다시 돌아가 다른 경로로 탐색하는 알고리즘이다(스택 자료구조를 이용).
동작과정
- 탐색 시작 노드를 스택에 삽입하고 방문 처리를 한다.
- 스택의 최상단 노드에 방문하지 않은 인접 노드가 있으면 그 인접 노드를 스택에 넣고 방문 처리를 한다. 방문하지 않은 인접 노드가 없으면 스택에서 최상단 노드를 꺼낸다.
- 2번의 과정을 더 이상 수행할 수 없을 때까지 반복한다.
(일반적으로 인접한 노드 중에서 방문하지 않은 노드가 여러 개 있으면 번호가 낮은 순서부터 처리한다)
# DFS 메서드 정의
def dfs(graph, v, visited):
# 현재 노드를 방문 처리
visited[v] = True
print(v, end=' ')
# 현재 노드와 연결된 다른 노드를 재귀적으로 방문
for i in graph[v]:
if not visited[i]:
dfs(graph, i, visited)
# 각 노드가 연결된 정보를 리스트 자료형으로 표현(2차원 리스트)
graph = [
[],
[2, 3, 8],
[1, 7],
[1, 4, 5],
[3, 5],
[3, 4],
[7],
[2, 6, 8],
[1, 7]
]
# 각 노드가 방문된 정보를 리스트 자료형으로 표현(1차원 리스트)
visited = [False] * 9
# 정의된 DFS 함수 호출
dfs(graph, 1, visited)
깊이 우선 탐색 알고리즘인 DFS는 스택 자료구조에 기초한다는 점에서 구현이 간단하다.
실제로는 스택을 쓰지 않아도 되며 탐색을 수행함에 있어서 데이터의 개수가 N개인 경우 **O(N)**의 시간이 소요된다.
DFS는 스택을 이용하는 알고리즘이기 때문에 실제 구현은 재귀 함수를 이용했을 때 매우 간결하게 구현 가능하다.
BFS
Breadth First Search(너비 우선 탐색)
가까운 노드부터 탐색하는 알고리즘
선입선출 방식인 큐 자료구조를 이용하는 것이 정석이다.
동작과정
- 탐색 시작 노드를 큐에 삽입하고 방문 처리를 한다.
- 큐에서 노드를 꺼내 해당 노드의 인접 노드 중에서 방문하지 않은 노드를 모두 큐에 삽입하고 방문 처리를 한다.
- 2번의 과정을 더 이상 수행할 수 없을 때까지 반복한다.
너비 우선 탐색 알고리즘인 BFS는 큐 자료구조에 기초한다는 점에서 구현이 간단하다.
실제로 구현함에 있어 deque 라이브러리를 사용하는 것이 좋으며 탐색을 수행함에 있어 O(N)의 시간이 소요된다.
일반적인 경우 실제 수행 시간은 DFS 보다 좋은 편이다.
from collections import deque
# BFS 메서드 정의
def bfs(graph, start, visited):
# 큐(Queue) 구현을 위해 deque 라이브러리 사용
queue = deque([start])
# 현재 노드를 방문 처리
visited[start] = True
# 큐가 빌 때까지 반복
while queue:
# 큐에서 하나의 원소를 뽑아 출력
v = queue.popleft()
print(v, end=' ')
# 해당 원소와 연결된, 아직 방문하지 않은 원소들을 큐에 삽입
for i in graph[v]:
if not visited[i]:
queue.append(i)
visited[i] = True
# 각 노드가 연결된 정보를 리스트 자료형으로 표현(2차원 리스트)
graph = [
[],
[2, 3, 8],
[1, 7],
[1, 4, 5],
[3, 5],
[3, 4],
[7],
[2, 6, 8],
[1, 7]
]
# 각 노드가 방문된 정보를 리스트 자료형으로 표현(1차원 리스트)
visited = [False] * 9
# 정의된 BFS 함수 호출
bfs(graph, 1, visited)
DFS BFS
동작 원리 | 스택 | 큐 |
구현 방법 | 재귀함수 이용 | 큐 자료구조 이용 |
'Algorithm' 카테고리의 다른 글
[algorithm][python] 이진 탐색 (0) | 2022.06.10 |
---|---|
[algorithm][python] 정렬 (0) | 2022.06.06 |
[algorithm][python] stack, queue (0) | 2022.06.06 |
[python] isalpha, isalnum/ isnumeric, isdigit, isdecimal 함수 (0) | 2022.06.06 |
[python] lambda 표현식 (0) | 2022.06.06 |